ON NON-HOMOGENEOUS TERNARY CUBIC DIOPHANTINE EQUATION

$\mathrm{w}^{2}+2 \mathrm{z}^{2}-2 \mathrm{wx}-4 \mathrm{zx}=\mathrm{x}^{3}-3 \mathrm{x}^{2}$
S.Vidhyalakshmi ${ }^{1}$, M.A.Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,Trichy-620 002,Tamil Nadu, India.

${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

ABSTRACT:

The non-homogeneous ternary cubic diophantine equation $w^{2}+2 z^{2}-2 w x-4 z x=x^{3}-3 x^{2}$ is analyzed for its patterns of non-zero distinct integral solutions. A few relations between the solutions and special number patterns are presented.

KEYWORDS:Ternary cubic Non- Homogeneous cubic, Integral solutions
NOTATIONS:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{m}, \mathrm{n}}=\mathrm{n}\left(1+\frac{(\mathrm{n}-1)(\mathrm{m}-2)}{2}\right) \\
& \mathrm{P}_{\mathrm{n}}^{\mathrm{r}}=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}(\mathrm{r}-2)-(\mathrm{r}-5))}{6} \\
& \mathrm{CP}_{\mathrm{k}}^{3}=\frac{\mathrm{k}^{3}+\mathrm{k}}{2}, \quad \mathrm{CP}_{\mathrm{k}}^{12}=\mathrm{k}\left(2 \mathrm{k}^{2}-1\right) \quad, \mathrm{CP}_{\mathrm{k}}^{18}=\frac{18 \mathrm{k}^{3}-12 \mathrm{k}}{6}
\end{aligned}
$$

INTRODUCTION:

The Diophantine equation offers an unlimited field for research due to their variety [1-3]. In particular, one may refer [4-12] for cubic equations with three unknowns. This communication concerns with yet another interesting equation $w^{2}+2 z^{2}-2 w x-4 z x=x^{3}-3 x^{2}$ representing non-homogeneous cubic with three unknowns for determining its infinitely many non-zero integral points. A few relations between the solutions and special number patterns are presented.

International Research Journal of Education and Technology Peer Reviewed Journal

ISSN 2581-7795

METHOD OF ANALYSIS:

The given non-homogeneous ternary cubic diophantine equation is

$$
\begin{equation*}
w^{2}+2 z^{2}-2 w x-4 z x=x^{3}-3 x^{2} \tag{1}
\end{equation*}
$$

We illustrate below the process of obtaining different sets of integer solutions to (1):
Set 1:
On completing the squares,(1) is written as

$$
\begin{equation*}
\mathrm{P}^{2}+2 \mathrm{Q}^{2}=\mathrm{x}^{3} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{P}=\mathrm{w}-\mathrm{x}, \mathrm{Q}=\mathrm{z}-\mathrm{x} \tag{3}
\end{equation*}
$$

After some algebra,it is observed that (2) is satisfied by

$$
\begin{equation*}
\mathrm{P}=\mathrm{m}\left(\mathrm{~m}^{2}+2 \mathrm{n}^{2}\right), \mathrm{Q}=\mathrm{n}\left(\mathrm{~m}^{2}+2 \mathrm{n}^{2}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{x}=\mathrm{m}^{2}+2 \mathrm{n}^{2} \tag{5}
\end{equation*}
$$

From (4) and (3), we have

$$
\begin{equation*}
\mathrm{w}=(\mathrm{m}+1)\left(\mathrm{m}^{2}+2 \mathrm{n}^{2}\right), \mathrm{z}=(\mathrm{n}+1)\left(\mathrm{m}^{2}+2 \mathrm{n}^{2}\right) \tag{6}
\end{equation*}
$$

Thus,(5) and (6) represent the integer solutions to (1).
Observations:
(i). $(m+1)\left(w^{2}-x^{2}\right)$ is a square multiple of 6
(ii). $\mathrm{w}^{3}-\mathrm{z}^{3}+(\mathrm{n}-\mathrm{m})^{3} \mathrm{x}^{3}=3(\mathrm{~m}-\mathrm{n}) \mathrm{x} \mathrm{zw}$
(iii). $\mathrm{w}^{2}+\mathrm{z}^{2}+(\mathrm{n}-\mathrm{m})^{2} \mathrm{x}^{2}=2(\mathrm{n}-\mathrm{m}) \mathrm{x}(\mathrm{z}-\mathrm{w})+2 \mathrm{wz}$
(iv). $\left(\mathrm{n}^{3}+1\right) \mathrm{w}^{3}-\mathrm{z}^{3}-(1+\mathrm{m})^{3} \mathrm{z}^{3}=-3 \mathrm{n}(\mathrm{m}+1) \mathrm{z} \mathrm{w}^{2}$
(v). $w^{2}+n^{2} w^{2}+(1+m)^{2} z^{2}=-2 n w^{2}+2(m+1)(n+1) w z$
(vi). When $\mathrm{n}=1$, the ratio given by

$$
\frac{m^{2} w+12 m P_{m-1}^{3}}{P_{m}^{3}} \text { is a square multiple of } 6
$$

Set 2:
Assuming (5) in (2) and employing the method of factorization ,one obtains

International Research Journal of Education and Technology Peer Reviewed Journal

ISSN 2581-7795

$$
\begin{equation*}
P+i \sqrt{2} Q=(m+i \sqrt{2} n)^{3} \tag{7}
\end{equation*}
$$

On equating the real and imaginary parts ,we have

$$
\begin{equation*}
\mathrm{P}=\mathrm{m}^{3}-6 \mathrm{mn}^{2}, \mathrm{Q}=3 \mathrm{~m}^{2} \mathrm{n}-2 \mathrm{n}^{3} \tag{8}
\end{equation*}
$$

Using (8) in (3), note that

$$
\begin{equation*}
\mathrm{z}=\mathrm{m}^{2}+2 \mathrm{n}^{2}+3 \mathrm{~m}^{2} \mathrm{n}-2 \mathrm{n}^{3}, \mathrm{w}=\mathrm{m}^{2}+2 \mathrm{n}^{2}+\mathrm{m}^{3}-6 \mathrm{mn}^{2} \tag{9}
\end{equation*}
$$

Thus,(5) and (9) represent the integer solutions to (1).
Observations:
(i). When $\mathrm{m}=1$, note that
$\mathrm{w}+\mathrm{z}-2 \mathrm{x}+6 \mathrm{P}_{\mathrm{n}}^{5}+\mathrm{t}_{14, \mathrm{n}}+5 \mathrm{n}$ is a cubical integer
(ii). When $\mathrm{n}=1$, it is seen that
$\mathrm{w}-\mathrm{x}-2 \mathrm{CP}_{\mathrm{m}}^{3}$ is divisible by 7
(iii). The ratio given by

$$
\frac{2 C P_{m}^{3}+x-w-m}{m} \text { is a square multiple of } 6
$$

(iv). When $\mathrm{m}=1$,observe that

$$
\mathrm{z}-\mathrm{x}+\mathrm{CP}_{\mathrm{n}}^{12} \text { is even }
$$

(v). When $\mathrm{m}=1$, it is obtained that

$$
9(\mathrm{z}-\mathrm{x})+6 \mathrm{CP}_{\mathrm{n}}^{18} \text { is divisible by } 15
$$

Set 3:
Write (2) as

$$
\begin{equation*}
\mathrm{P}^{2}+2 \mathrm{Q}^{2}=\mathrm{x}^{3} * 1 \tag{10}
\end{equation*}
$$

Consider 1 as

$$
\begin{equation*}
1=\frac{(1+\mathrm{i} 2 \sqrt{2})(1-\mathrm{i} 2 \sqrt{2})}{9} \tag{11}
\end{equation*}
$$

Using (5) and (11) in (10) and employing the method of factorization,one has

$$
\begin{equation*}
P+i \sqrt{2} Q=\frac{(1+i 2 \sqrt{2})(m+i \sqrt{2} n)^{3}}{3} \tag{12}
\end{equation*}
$$

Following the procedure as in Set 2 and replacing m by $3 \mathrm{M}, \mathrm{n}$ by 3 N ,the integer

International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795
solutions to (1) are given by

$$
\begin{aligned}
& x=9\left(M^{2}+2 N^{2}\right), z=9\left(2 M^{3}-12 M^{2}+3 M^{2} N-2 N^{3}+M^{2}+2 N^{2}\right), \\
& w=9\left(M^{3}-6 M N^{2}-12 M^{2} N+8 N^{3}+M^{2}+2 N^{2}\right)
\end{aligned}
$$

Note:
One may also take 1 on the R.H.S. of (10) in general as

$$
1=\frac{\left(2 r^{2}-s^{2}+i 2 r s \sqrt{2}\right)\left(2 r^{2}-s^{2}-i 2 r s \sqrt{2}\right)}{\left(2 r^{2}+\mathrm{s}^{2}\right)^{2}}
$$

The repetition of the above process leads to different sets of solutions to (1) when r and s take different values.

Observations:
When $\mathrm{N}=1$, note that
(a). $\mathrm{w}-18 \mathrm{P}_{\mathrm{M}}^{5}+54 \mathrm{t}_{6, \mathrm{M}} \equiv 0(\bmod 18)$
(b). $36 \mathrm{P}_{\mathrm{M}}^{5}-108 \mathrm{M}-\mathrm{w}+180 \equiv 0(\bmod 6)$
(c). $324 \mathrm{P}_{\mathrm{M}}^{3}-432 \mathrm{M}-3 \mathrm{z} \equiv 0(\bmod 6)$
(d). $108 \mathrm{P}_{\mathrm{M}}^{3}-\mathrm{z}+288 \equiv 0(\bmod 18)$

CONCLUSION:
In this paper, we have made an attempt to obtain all integer solutions to (1). To conclude, one may search for integer solutions to other choices of homogeneous or non-homogeneous 3

REFERENCES

[1].L.E. Dickson, History of Theory of Numbers, vol 2, Chelsea publishing company, New York, (1952).
[2].L.J. Mordell, Diophantine Equations, Academic press, London, (1969).
[3].R.D. Carmichael, The theory of numbers and Diophantine analysis, New York, Dover, (1959).
[4].M.A.Gopalan ,G. Srividhya, Integral solutions of ternary cubic diophantine equation $\mathrm{x}^{3}+\mathrm{y}^{3}=\mathrm{z}^{2}$,Acta Ciencia Indica,Vol.XXXVII,No.4,805-808,2011
[5]. M.A.Gopalan,S. Vidhyalakshmi, J.Shanthi, J. Maheswari, On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$, IJAR, Volume 1, Issue 8, 209-212,2015

International Research Journal of Education and Technology Peer Reviewed Journal

ISSN 2581-7795
[6].G.Janaki and P . Saranya, On the ternary Cubic diophantine equation $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y)+4=40 z^{3}$, International Journal of Science and Research- online, Vol 5, Issue3, Pg.No:227-229, March 2016.
[7].G.Janaki and C Saranya, Observations on the Ternary Quadratic Diophantine Equation $6\left(x^{2}+y^{2}\right)-11 x y+3 x+3 y+9=72 z^{2}$, International Journal of Innovative Research in Science, Engineering and Technology, Vol-5, Issue-2, 2060-2065, Feb 2016.
[8].G.Janaki and C.saranya,Integral Solutions Of The Ternary Cubic Equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3}$,IRJET,Vol:4,Issue:3,665-669,2017
[9]. M.A.Gopalan, Sharadha Kumar, "On the non-homogeneous ternary cubic equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=111 z^{3}$, International Journal of Engineering and Techniques, 4(5), Pp:105-107,2018
[10]. Sharadha Kumar, M.A.Gopalan, "On The Cubic Equation $x^{3}+y^{3}+6(x+y) z^{2}=4 w^{3}$ ", JETIR, 6(1), Pp:658-660,2019
[11].A.Vijayasankar, G.Dhanalakshmi, Sharadha Kumar, M.A.Gopalan, On The Integral Solutions To The Cubic Equation With Four Unknowns $x^{3}+y^{3}+(x+y)(x-y)^{2}=16 z w^{2}$ International Journal For Innovative Research In Multidisciplinary Field, 6(5), 337-345,2020
[12]. A.Vijayasankar, Sharadha Kumar , M.A.Gopalan, " On Non-Homogeneous Ternary Cubic Equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{x}+\mathrm{y}=2 \mathrm{z}\left(2 \mathrm{z}^{2}-\alpha^{2}+1\right)$ ", International Journal of Research Publication and Reviews, 2(8) ,592-598, 2021

